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Abstract

In this paper, we consider numerical approximations of diffusion terms for finite volume as well as discontinuous Galer-
kin schemes. Both classes of numerical schemes are quite successful for advection equations capturing strong gradients or
even discontinuities, because they allow their approximate solutions to be discontinuous at the grid cell interfaces. But, this
property may lead to inconsistencies with a proper definition of a diffusion flux. Starting with the finite volume formula-
tion, we propose a numerical diffusion flux which is based on the exact solution of the diffusion equation with piecewise
polynomial initial data. This flux may also be used by discontinuous Galerkin schemes and gives a physical motivation for
the Symmetric Interior Penalty discontinuous Galerkin scheme. The flux proposed leads to a one-step finite volume or dis-
continuous Galerkin scheme for diffusion, which is arbitrary order accurate simultaneously in space and time. This strategy
is extended to define suitable numerical fluxes for nonlinear diffusion problems.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The class of discontinuous Galerkin (DG) finite element schemes seems to be one of the most interesting
candidates to construct high order accurate schemes for solving the compressible Navier–Stokes equations
in complex three-dimensional geometries. The DG scheme was originally proposed by Reed and Hill [21]
in 1973 for the numerical solution of neutron transport and by Nitsche [20] in 1971 for the approximation
of elliptic equations. The application to time dependent nonlinear conservation laws then was starting with
the work of Cockburn and Shu [9], for a review of the development of DG methods see [8].

To extend this approach to the compressible Navier–Stokes equations a severe difficulty in the DG approach
turned out to be the definition of appropriate numerical fluxes for diffusion terms. In the DG approach
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approximate solutions are allowed to be discontinuous at the grid cell interfaces. By this, it is possible to estab-
lish a consistent and stable approximation of strong gradients and even the shock-capturing property. The
numerical flux for the advection part takes into account the discontinuity and uses information of the break
up of these discontinuities into different waves. How to do this in a proper way has been shown within the devel-
opment of the finite volume schemes during the last three decades. The problem for the approximation of the
diffusion terms seems to be that the discontinuities at the interfaces have to be properly resolved, too. To take
simply the arithmetic mean of the derivatives from the right and the left may be inconsistent, because the arith-
metic mean of the derivatives does not take into account a possible jump of the functions. A number of correc-
tions and better definitions of the diffusion fluxes have been proposed which introduce in some way the influence
of the jump. A unified formulation and analysis has been given by Arnold et al. in [2] and was continued in [3].

It is interesting to observe that the difficulty approximating diffusion terms already occurs within the finite
volume framework. The values at the grid cell interfaces may be discontinuous after the reconstruction step,
especially at strong gradients. Let us consider the integral conservation equation
unþ1
i ¼ un

i þ
1

Dx

Z tnþ1

tn

jux xiþ1
2
; t

� �
dt � 1

Dx

Z tnþ1

tn

jux xi�1
2
; t

� �
dt; ð1:1Þ
for the scalar diffusion equation
ut ¼ juxx; with j ¼ constant > 0: ð1:2Þ
The FV scheme is based on this evolution equation for the integral values (1.1) which is obtained from Eq.

(1.2) by integration with respect to x and t over the spatial grid cell xi�1
2
; xiþ1

2

h i
and the time interval [tn, tn+1].

Here, un
i denotes the integral value at time tn.

For advection equations the idea of Godunov [13] to take constant values in each grid cell and to calculate
the break-up of the discontinuity was very successful. This idea may also directly be applied to diffusion. A
general bounded solution for initial value problems of the diffusion Eq. (1.2) reads as
uðx; tÞ ¼ 1

2
ffiffiffiffiffiffiffi
jpt
p

Z 1

�1
u0ðnÞe�

ðx�nÞ2
4jt dn: ð1:3Þ
Inserting the piecewise constant initial data
uðx; 0Þ ¼ u0ðxÞ ¼
ul for x < 0;

ur for x > 0;

�
ð1:4Þ
and differentiating the solution with respect to x gives at x = 0:
uxð0; tÞ ¼
ur � ul

2
ffiffiffiffiffiffiffi
pjt
p : ð1:5Þ
This we can use to define the numerical flux
Z tnþ1

tn

jux xiþ1
2
; t

� �
dt � jDt

un
iþ1 � un

iffiffiffiffiffiffiffiffiffiffi
pjDt
p : ð1:6Þ
Inserting this flux approximation into (1.1) and resorting yields
unþ1
i ¼ un

i þ
1ffiffiffiffiffiffiffiffiffiffi

pjDt
p jDt

Dx
ðun

iþ1 � 2un
i þ un

i�1Þ: ð1:7Þ
It is obvious that this is no consistent approximation to the diffusion Eq. (1.2) until
1ffiffiffiffiffiffiffiffiffiffi
pjDt
p ¼ 1

Dx
) jDt

Dx2
¼ 1

p
: ð1:8Þ
In this case, the method coincides formally with the finite difference scheme using central differences.
These considerations motivate the standard approach of the finite volume community in practical calcula-

tions of advection diffusion equations – the use of central finite differences for the diffusion part. The values
taken for the differences are not the values at the grid cell interfaces obtained from the reconstruction step, but
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rather the approximation of the average values used as point values in the barycenter. This procedure may be
considered as an additional smooth reconstruction of values at the grid cell interface to evaluate the diffusion
flux. To generate no wiggles at strong gradients this approximation needs a couple of points within the viscous
profile. This is no problem, if this corresponds well with the physical viscous profile. For high Reynolds num-
ber flow or other problems with a narrow layer this approach may lead to a refinement of the grid to get sta-
bility. An approach to avoid this smearing was given by Harabetian in [14] for a general advection diffusion
equation. He fitted a profile of a traveling wave from one grid cell center to the adjacent one and used a trav-
eling wave solution to obtain the flux. But this approach becomes rather complicated for the Navier–Stokes
equations, see Weekes [26].

In this paper, we propose a diffusion flux for (1.2) that is based on the usual reconstruction at the grid cell
interfaces for advection equations and may be considered as a self-consistent treatment of diffusion terms in
the FV framework. It gives proper results for diffusion in FV schemes even in the case of discontinuous data
generated by a discontinuous nonlinear reconstruction, based on TVD, ENO or WENO interpolation, or for
DG schemes. The order in space and time is determined by the order of the reconstruction or the order of the
trial function for DG schemes. The numerical diffusion flux is based on the initial value problem for (1.2) not
with piecewise constant but with piecewise polynomial data which we call diffusive generalized Riemann prob-
lem. The piecewise constant discretization cannot work, as the approximation is first order accurate and has
no approximation properties for the spatial derivative beside the case (1.8) being identical to the difference
approximation.

The format of this paper is as follows. In Section 2, we use the solution of the diffusive generalized Riemann
problem to construct the numerical flux for the linear scalar diffusion equation. It is used for a FV scheme and
the experimental order of convergence for orders 1 up to 6 is shown. In Section 3, we combine this numerical
flux with the discontinuous Galerkin approach. The scheme proposed is compared for P1 elements with the
symmetric interior penalty method. The extension to nonlinear diffusion systems is presented in Section 4.
Conclusions and an outlook addressing the advection diffusion problem are given in Section 5.

2. A finite volume scheme for diffusion

The FV scheme is an approximation of the evolution equation for integral mean values (1.1) and may be
written as
unþ1
i ¼ un

i þ
1

Dx

Z tnþ1

tn

jwx xiþ1
2
; t

� �
dt � 1

Dx

Z tnþ1

tn

jwx xi�1
2
; t

� �
dt; ð2:9Þ
where we introduced the high order (P2) reconstruction polynomial w. Higher order reconstructions have
been proposed in [15] called essentially non-oscillatory (ENO) reconstruction. Some times later weighted
essentially non-oscillatory (WENO) reconstruction was introduced, see [18], and became the standard recon-
struction technique. A detailed description of the different approaches is given, e.g. by Shu in [22]. To find a
proper definition of the remaining numerical fluxes for wx we consider in the following the local problem at the
grid cell interface and deduce from this a diffusion flux approximation.

2.1. The diffusive generalized Riemann problem

We assume that we have already polynomials in every grid cell which may jump at the grid cell interface and
consider the initial value problem for the diffusion Eq. (1.2) with piecewise polynomial initial data:
uðx; 0Þ ¼ u0ðxÞ ¼

Pk
j¼0

cl
jx

j for x < 0;

Pk
j¼0

cr
jx

j for x > 0:

8>>><>>>: ð2:10Þ
We call this initial value problem the diffusive generalized Riemann problem (dGRP) motivated by the name
in the hyperbolic case, which was introduced by Ben-Artzi and Falcovitz [6] for piecewise linear initial data,
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constructing a second order accurate finite volume scheme for the Euler equations. General polynomial data
were considered by Toro et al. within the ADER approach, see [23,24].

The general bounded solution for initial value problems of the diffusion equation is given in (1.3). The ini-
tial data (2.10) are inserted and integrated. The derivative with respect to x at the point x = 0 is then obtained
as
uxð0; tÞ ¼
Xk

j¼0

Cjðcr
j � cl

jð�1ÞjÞt
j�1

2 : ð2:11Þ
A singularity occurs at time t = 0, if there is a jump of the left and right-hand side polynomial. But the func-
tion (2.11) can be integrated improperly over the time interval [0,Dt] to give
Z Dt

0

uxð0; tÞdt ¼
Xk

j¼0

Cjðcr
j � cl

jð�1ÞjÞ 2

1þ j
Dt

jþ1
2 : ð2:12Þ
with the recursive definition of the coefficients Cj:
Cj ¼ 2jjCj�2 with C0 ¼
1

2
ffiffiffiffiffiffi
pj
p and C1 ¼

1

2
: ð2:13Þ
The Eq. (2.12) gives the exact value for the time integrated diffusive flux of the generalized Riemann problem
at the point x = 0.

Using the abbreviations
u�iþ1
2

:¼ lim
e 7!0

u xiþ1
2
� e

� �
;

sutiþ1
2

:¼ uþ
iþ1

2
� u�iþ1

2
;

fugiþ1
2

:¼ 1

2
uþ

iþ1
2
þ u�iþ1

2

� �
;

ð2:14Þ
the flux can be written for any k in the form
Z Dt

0

jux xiþ1
2
; t

� �
dt :¼

X#k
2

j¼0

geC2j

��
o2ju
ox2j

xiþ1
2
; 0

� ���
þ o2jux

ox2j
xiþ1

2
; 0

� �� �	 

ðjDtÞjþ1

ðjþ 1Þ! ð2:15Þ	 


with the coefficients eC2j ¼ 4j 2jþ 1

j

�1

, g :¼ 1ffiffiffiffiffiffiffi
pjDt
p and the integer value(
#
k
2

:¼
k
2

for k even;
kþ1

2
for k odd

ð2:16Þ
The formulation in this form shows that the dGRP flux consists of two parts. One part contains the jump of
even order derivatives or for j = 0 the jump of the polynomial values, while the second part contains the arith-
metic mean of odd derivatives.

2.2. Experimental order of convergence

In Table 1, we show the experimental order of convergence obtained for the diffusion problem (1.2) with the
sinusoidal initial data
qðxÞ ¼ sinð2pxÞ; x 2 ½0; 1�; ð2:17Þ

for tend = 0.1. A similar problem was investigated for discontinuous Galerkin schemes by Zhang and Shu in
[27]. For the second order TVD reconstruction we obtain a first order accurate method for the diffusion equa-
tion. If the order of the reconstruction is increased to three using the WENO approach, then we obtain a sec-
ond order method. This behavior is continued for higher orders and is shown in Table 1. The decrease of the
order by one is due to the fact that the solution u is indeed reconstructed with (k + 1)-th order of accuracy, but



Table 1
Experimental order of convergence for the FV scheme with the dGRP flux

#Cells L2 OL2
L1 OL1

2nd Order TVD

8 5.5655235E�03 5.0311993E�03
16 2.3039823E�03 1.3 2.0691503E�03 1.3
32 1.0929452E�03 1.1 9.8316301E�04 1.1
64 5.3708225E�04 1.0 4.8342527E�04 1.0

3rd Order WENO

8 1.1703535E�03 1.0479232E�03
16 2.8839127E�04 2.0 2.5929233E�04 2.0
32 7.0252461E�05 2.0 6.3231695E�05 2.0
64 1.7525155E�05 2.0 1.5777174E�05 2.0

4th Order WENO

8 5.2375353E�04 4.6729867E�04
16 5.8686240E�05 3.2 5.2774386E�05 3.1
32 6.9615193E�06 3.1 6.2662748E�06 3.1
64 8.6228409E�07 3.0 7.7629596E�07 3.0

7th Order WENO

8 1.1142303E�05 1.0040673E�05
16 1.4126312E�07 6.3 1.2663577E�07 6.3
32 1.9654437E�09 6.2 1.7685081E�09 6.2
64 2.9905016E�11 6.0 2.6922175E�11 6.0
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in the flux calculation we need the first spatial derivative which is then k-th order accurate only. For all cal-
culations we chose a time step as given by Dt = Dx2/2j which corresponds to the usual stability constraint for
explicit schemes. The optimal accuracy is obtained with this choice. The accuracy decreases, if smaller time
steps are chosen.

3. Discontinuous Galerkin for diffusion

3.1. Basic considerations

Bassi and Rebay [4] considered in 1997 discontinuous approximations of diffusion terms for the compress-
ible Navier–Stokes equations. Cockburn and Shu [10] proposed in 1998 the so-called local discontinuous
Galerkin (LDG) methods by generalizing this approach, for further historical remarks see Arnold et al. [3].
Bassi and Rebay as well as Cockburn and Shu started from the reformulation of the diffusion equation into
a system of first order equations by introducing an additional variable q:
ut � jqx ¼ 0;

q� ux ¼ 0:
ð3:18Þ
As usual, these equations are multiplied by test functions and integrated over an arbitrary grid cell. Par-
tial integration introduces fluxes at the boundary points of the grid cell in both equations. In the first
equation, the flux is determined by q = ux, while in the second one the flux determined by the function
u itself.

We start in the following from the diffusion equation in the usual formulation (1.2) and apply partial inte-
gration twice. First, we multiply this equation with a test function and integrate over the grid cell Qi:
Z

Qi

ðut � juxxÞudx ¼ 0: ð3:19Þ
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We then use a first partial integration to get
Z
Qi

utudx� ½juxu�oQi
þ
Z

Qi

juxux dx ¼ 0; ð3:20Þ
where oQi denotes the two boundary points of Qi. A second partial integration results in the following weak
formulation of the diffusion equation:
Z

Qi

utudx� ½juxu�oQi
þ ½juux�oQi

�
Z

Qi

juuxx dx ¼ 0: ð3:21Þ
Also in this formulation two fluxes at the grid cell interface occur, one determined by ux and the other by u.
We next introduce the approximation uh 2 Vh of the solution u with
V h ¼ fv : v is a polynomial of degree at most k for x 2 Qi; i ¼ 1; . . . ;Ng: ð3:22Þ

The approximation may jump at a grid cell interface. In the semi-discrete setting as considered up to now the
coefficients of the polynomials, i.e. the degrees of freedom, are still functions in time. We also replace the test
functions by piecewise polynomials, but do not change their notation for simplicity.

The DG scheme is completely defined, if appropriate numerical fluxes for uh and (uh)x are specified. We
assume that these fluxes cover the exchange across the boundaries well and that the integral is determined
by interior values only. We can then reformulate (3.21) by using the identity
Z

Qi

uhuxx dx ¼ ½uhux�int �
Z

Qi

ðuhÞxux dx ð3:23Þ
with the interior values
½uhux�int :¼ ðuhÞ�iþ1
2
ðuxÞ

�
iþ1

2
� ðuhÞþi�1

2
ðuxÞ

þ
i�1

2
; ð3:24Þ
to evaluate the integral in Eq. (3.21). Inserting this identity into (3.21) leads to
Z
Qi

ðuhÞtudx� ½jðuhÞxu�oQi
þ ½juhux�oQi

� ½juhux�int þ
Z

Qi

jðuhÞxux dx ¼ 0 ð3:25Þ
as a general weak formulation for the DG method. The formulation (3.25) directly corresponds to the general
formulation based on the system (3.18).

Adding up Eq. (3.25) over all grid cells leads to the general primal formulation of Arnold et al. in [2,3].
They showed that choosing numerical fluxes for uh and (uh)x will bring up a wide range of commonly used
DG methods for diffusion equations.

3.2. DG scheme with dGRP flux for scalar linear diffusion

To use the dGRP flux with the DG approach we start from formulation (3.21). For the definition of the
numerical fluxes for (uh)x we consider the local dGRP problem at the grid cell interface and use the diffusion
flux (2.15). In addition, we need the flux of uh which is also obtained from the exact dGRP solution in the form
Z Dt

0

uðxiþ1
2
; tÞdt :¼ u xiþ1

2
; 0

� �n o
Dt þ

X#kþ1
2

j¼1

geC2j

""
o2ðj�1Þux

ox2ðj�1Þ xiþ1
2
; 0

� �##þ o2ju
ox2j

xiþ1
2
; 0

� �� �0@ 1A jjDtjþ1

ðjþ 1Þ! :

ð3:26Þ

We note that the flux for uh and for (uh)x are conservative, in the sense that they are uniquely defined for every
grid cell interface. Arnold et al. [3] showed that this property is related to the adjoint consistence property of
the corresponding primal formulation, which guarantees the optimal order for L2 convergence. To demon-
strate the accuracy of the dGRP-DG scheme, convergence tests for the unsteady linear diffusion Eq. (1.2) with
sinusoidal initial data (2.17) and tend = 0.1 have been performed and are shown in Table 2. We observe that
for polynomials with degree k we get the optimal convergence rate of k + 1 as expected.



Table 2
Experimental order of convergence of the DG method based on the dGRP flux

#Cells L2 OL2
L1 OL1

DG(k = 1)

8 1.57E�03 1.395E�03
16 4.10E�04 1.9 3.63E�04 1.9
32 1.04E�04 2.0 9.18E�05 2.0
64 2.60E�05 2.0 2.30E�05 2.0

DG(k = 2)

8 3.01E�05 2.48E�05
16 3.46E�06 3.1 2.77E�06 3.2
32 4.23E�07 3.0 3.32E�07 3.1
64 5.26E�08 3.0 4.08E�08 3.0

DG(k = 3)

4 2.02E�05 1.79E�05
8 1.32E�06 3.9 1.05E�06 4.1

16 8.40E�08 4.0 6.44E�08 4.0
32 5.28E�09 4.0 4.01E�09 4.0

DG(k = 4)

4 1.49E�06 1.32E�06
6 1.95E�07 5.0 1.49E�07 5.4
8 4.62E�08 5.0 3.78E�08 4.8

16 1.44E�09 5.0 1.15E�09 5.0

DG(k = 5)
2 7.69E�06 6.64E�06
4 9.60E�08 6.3 8.28E�08 6.3
6 8.69E�09 5.9 7.08E�09 6.1
8 1.57E�09 6.0 1.25E�09 6.0
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In these calculations, the time step Dt was always chosen as large as possible. For an explicit DG scheme for
diffusion it is determined by a parabolic stability requirement in the form
jDt ¼ Dx2

d2
: ð3:27Þ
We remind that for the simplest second order explicit finite difference scheme we have d ¼
ffiffiffi
2
p

in one space
dimension. The stability requirement for a DG scheme depends on the order of accuracy and becomes more
stringent for higher orders. Numerical experiments gave us for d the minimal values 1.796, 5.000, 8.165, 16.43,
24.6 for the orders 2, 3, 4, 5 and 6, respectively. Combining (3.27) with g in the flux definitions (2.15) and (3.26)
leads to
g ¼ 1ffiffiffiffiffiffiffiffiffiffi
pjDt
p ¼ 1ffiffiffi

p
p d

Dx
; ð3:28Þ
which relates g to the stability constraint and the space increment.

3.3. A comparison for P1 elements

As the proposed DG scheme is an approximation simultaneously in space and time, the comparison with
other DG scheme is difficult, as this scheme provides rather a semi-discrete approximation, whereas in other
schemes, the time approximation is usually done in an ODE approach using a Runge–Kutta scheme. But in
the simplest case, piecewise linear trial and test functions and the explicit Euler time approximation, a com-
parison becomes feasible and will be presented in the following. We thus assume a piecewise representation of
the solution, linear in every grid cell, usually denoted by P1. To abbreviate the notations we skip the index h,
and simply write u for the approximate piecewise linear solution.
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We start with the simplest but inconsistent possibility: the arithmetic mean of the first order derivative from
the right and the left-hand side. The corresponding numerical fluxes read as
uji�1
2

:¼ u�
i�1

2

and uxji�1
2

:¼ fuxgi�1
2
: ð3:29Þ
This scheme is inconsistent, since it does not take into account the jumps at the grid cell interfaces, see, e.g. [27]
for further details. The fully discrete form of the P1 scheme using the arithmetic mean flux and the Euler time
approximation reads as
Z

Qi

ujtnþ1

tn
udxþ Dt

Z
Qi

jun
xux dx� jDt fun

xgiþ1
2
u�iþ1

2
� fun

xgi�1
2
uþ

i�1
2

� �
¼ 0: ð3:30Þ
An idea of the FE community to get consistency was to add an additional term that penalizes the jumps. The
first penalty scheme was already proposed by Nitsche [20] for elliptic equations within the primal formulation,
called the Interior Penalty or Symmetric Interior Penalty (SIP) scheme. It was studied in detail, e.g. by Arnold
[1]. For the fully discrete flux formulation we can use the formulation (3.25) with the numerical fluxes
uji�1
2

:¼ fugi�1
2

and uxji�1
2

:¼ fuxgi�1
2
þ �gsuti�1

2
; ð3:31Þ
and the Euler time integration to get
Z
Qi

ujtnþ1

tn
udxþ Dt

Z
Qi

jun
xux dx� jDt fun

xgiþ1
2
u�iþ1

2
� fun

xgi�1
2
uþ

i�1
2

� �
þ 1

2
jDt suntiþ1

2
ðuxÞ

�
iþ1

2
þsunti�1

2
ðuxÞ

þ
i�1

2
Þ � jDt�g suntiþ1

2
u�iþ1

2
� sunti�1

2
uþ

i�1
2

� �
¼ 0:

�
ð3:32Þ
For this, Houston, Schwab and Süli showed in [16] that the penalization parameter has to be chosen for sta-
bility reasons as
�g ¼ C
k2

Dx
; ð3:33Þ
where k denotes again the degree of the polynomial and C is a sufficiently large constant.
In the following, we consider the dGRP approach. The starting point of the scheme is formulation (3.25).

The numerical fluxes are given by (2.15) and (3.26) for k = 1 and read for the semi-discrete case as
u xiþ1
2
; t þ tn

� �
:¼ fungiþ1

2
þ

ffiffiffiffiffi
jt
p

r
sun

xtiþ1
2
;

ux xiþ1
2
; t þ tn

� �
:¼ fun

xgiþ1
2
þ 1

2
ffiffiffiffiffiffiffi
pjt
p suntiþ1

2
:

ð3:34Þ
The fully-discrete fluxes are obtained by integration in time. Inserting this in (3.25) leads to the following DG
scheme:
Z

Qi

ujtnþ1

tn
udxþ Dt

Z
Qi

jun
xux dx� jDt fun

xgiþ1
2
u�iþ1

2
� fun

xgi�1
2
uþ

i�1
2

� �
þ 1

2
jDt suntiþ1

2
ðuxÞ

�
iþ1

2
þ sunti�1

2
ðuxÞ

þ
i�1

2

� �
� jDtg suntiþ1

2
u�iþ1

2
� sunti�1

2
uþ

i�1
2

� �
þ 2

3
ðjDtÞ2g sun

xtiþ1
2
ðuxÞ

�
iþ1

2
� sun

xti�1
2
ðuxÞ

þ
i�1

2

� �
¼ 0:

ð3:35Þ
The comparison with the SIP scheme (3.32) indicates that the first two flux terms are identical. The third one
only differs by the ‘penalization’ constant. If the penalization parameter �g in the interior penalty scheme is
defined to be g from (3.28), then also the third term of the flux is identical. In numerical experiments, we ob-
tained stability and the constraint
jDt
Dx2
6 0:16; ð3:36Þ
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with the minimal penalty constant
�gmin ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pjDtmax

p � 1:41

Dx
: ð3:37Þ
The additional fourth flux term of the dGRP flux has no counterpart in the SIP-DG scheme. In our numerical
studies we observed, that this term increases the stability and allows larger time steps for the P1 case, see (3.37)
and (3.38). For higher order approximations it turned out, that the effect of these terms decrease. The P1 term
corresponds to one found by van Leer and Nomura [25] who constructed a DG scheme for diffusion based on
a smooth recovery at the grid cell interfaces. They state that the class of interior penalty schemes should be
extended to include this additional term. Instead of (3.37) the minimal penalty constant of the dGRP-DG
scheme is given by
gmin �
1

Dx
: ð3:38Þ
We remark that the dGRP approach is an approach simultaneously in space and time, for which the semi-dis-
crete version depends explicitly on time t, see (3.34). Thus, for pure elliptic problems the dGRP-DG scheme
cannot directly be used.
4. Diffusion systems

4.1. Equations and basic formulation

In this section, we extend the dGRP-DG scheme to solve diffusion problems of the form
Ut � F ðU ;UxÞx ¼ Ut � ðDðUÞU xÞx ¼ 0; ð4:39Þ

with the vector of unknowns U :¼ ðu1; . . . ; uMÞT 2 RM , and the positive semi-definite diffusion matrix
DðUÞ 2 RM�M . We consider this extension within the DG framework, but the application to FV schemes
can be done in an analogous way.

The base of our approximation is a weak formulation, which is derived again with two integration by parts.
We multiply Eq. (4.39) with a test function U = (/1, . . . ,/M) and integrate over an arbitrary grid cell Qi:
Z

Qi

ðU t � F ðU ;U xÞxÞ � UðxÞdx ¼ 0; ð4:40Þ
where ‘‘Æ’’ denotes the scalar product in RM . We proceed with the first integration by parts
Z
Qi

Ut � UðxÞdx� ½F ðU ;UxÞ � U�oQi
þ
Z

Qi

F ðU ;U xÞ � UxðxÞdx ¼ 0: ð4:41Þ
Due to the second order character of the problem (4.39), we are able to perform another integration by parts
of the volume integral. We first reformulate this term using the homogeneity property of the viscous flux with
respect to the gradient
Z

Qi

F ðU ;U xÞ � UxðxÞdx ¼
Z

Qi

ðDðUÞUxÞ � UxðxÞdx ¼
Z

Qi

Ux � DðUÞTUxðxÞ
� �

dx; ð4:42Þ
and proceed with the second integration by parts:
Z
Qi

Ux � DðUÞTUxðxÞdx ¼ ½U � DðUÞTUx�oQi
�
Z

Qi

U � o

ox
ðDðUÞTUxðxÞÞdx: ð4:43Þ
For our DG discretization we introduce the approximation Uh ¼ ðuh
1; . . . ; uh

MÞ
T of the solution U. Again, the

considered approximation is for each component a polynomial of degree at most k in every grid cell. We
choose orthogonal trial and test functions, namely the normalized Legendre polynomials, and use the notation
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U n
i :¼ Uhðx; tnÞ ¼

Xkþ1

p¼1

bU n
i;p/pðxÞ; for x 2 Qi: ð4:44Þ
To easily evaluate the new viscous volume integral, we use the following identity
�
Z

Qi

U h �
o

ox
ðDðU hÞTUxðxÞÞdx ¼ �½Uh � DðU hÞTUx�int þ

Z
Qi

ðUhÞx � DðU hÞTUxðxÞdx: ð4:45Þ
Combining these derivations yield the weak formulation of the diffusion system (4.39) as
Z
Qi

ðUhÞt � UðxÞdx� ½F ðU h; ðU hÞxÞ � U�oQi
þ ½U h � DðUhÞTUx�oQi

� ½U h � DðUhÞTUx�int

þ
Z

Qi

F ðUh; ðU hÞxÞ � UxðxÞdx ¼ 0: ð4:46Þ
The back and forth integration by parts generates two additional flux terms in (4.46) compared to formulation
(4.41). For a smooth solution both terms are equal and cancel out each other, while for a discontinuous
approximation a term depending on the left and right value of the approximate solution is generated. A sim-
ilar trick is used by Bassi and Rebay [5], in the context of a mixed formulation to introduce the so-called global
lifting operator.

With the identity
U h � ðDðUhÞTUxÞ ¼ ðDðU hÞUhÞ � Ux ¼ F ðUh;U hÞ � Ux; ð4:47Þ

we can rewrite the semi-discrete weak formulation (4.46) in terms of the viscous flux F as
Z

Qi

ðUhÞt � Udx� ½F ðU h; ðUhÞxÞ � U�oQi
þ
Z

Qi

F ðUh; ðU hÞxÞ � Ux dxþ ½F ðU h;UhÞ � Ux�oQi

� ½F ðU h;UhÞ � Ux�int ¼ 0; ð4:48Þ
which has some advantages for implementation issues. To keep notations short we will use in the following U

instead of Uh.

4.2. The linear case

We first extend the dGRP flux to the case of a linear system, where D is a constant matrix, with
F = F(Ux) = DUx. Analogous to the scalar case, we need the time integrals of the viscous fluxes. We restrict
ourselves to the case where D has a full set of eigenvectors Vp. This allows to construct the dGRP solution in
the spirit of hyperbolic Riemann solvers. We start with the initial value problem for the diffusion system
Ut � DU xx ¼ 0;

Uðx; 0Þ ¼
U rðxÞ for x > 0;

U lðxÞ for x < 0;

� ð4:49Þ
where Ur and Ul are polynomials. With the above mentioned assumption it is then possible to introduce the
new variables
W :¼ V �1U ; ð4:50Þ

where the columns of V are the eigenvectors Vp. Inserting this into Eq. (4.49) leads to an uncoupled system of
the form
ðwpÞt � kpðwpÞxx ¼ 0;

wpðx; 0Þ ¼
ðwpÞrðxÞ for x > 0;

ðwpÞlðxÞ for x < 0;

�
p ¼ 1; . . . ;M ;

ð4:51Þ
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where kp denotes the corresponding eigenvalue of the diffusion matrix. For each scalar equation we can use the
exact dGRP formulae (2.15) and (3.26). After re-substituting (4.50) we obtain the exact dGRP solution, which
completes the dGRP-DG scheme for linear diffusion systems.

For the P1 case this reads as
Z Dt

0

U x xiþ1
2
; t

� �
dt ¼ Ux xiþ1

2
; 0

� �n o
þ dðkÞffiffiffi

p
p

Dx
P
��

Uðxiþ1
2
; 0Þ
��	 


Dt;Z Dt

0

U xiþ1
2
; t

� �
dt ¼ U xiþ1

2
; 0

� �n o
þ 2Dx

3
ffiffiffi
p
p

dðkÞQ
��

U x xiþ1
2
; 0

� ���	 

Dt;

ð4:52Þ
with the matrices
P :¼ V KV �1 and Q :¼ V HV �1; ð4:53Þ
where K and H are diagonal matrices with entries K½p; p� ¼
ffiffiffiffiffiffiffi
kmax

kp

q
and H½p; p� ¼

ffiffiffiffiffiffiffi
kp

kmax

q
. The time step is calcu-

lated as Dt ¼ Dx2

dðkÞ2kmax
, with kmax = maxp=1,. . .,Mkp and the stability numbers d(k) from the scalar case.

4.3. The nonlinear case

For a general nonlinear system (4.39) no exact solution of the dGRP is available. Hence, we first approx-
imate the integrals by an appropriate high order quadrature formulae. For a trial function of degree k, we
choose J :¼ k + 1 Gauss points nj in space and L :¼ # kþ4

4
Gauss points sl in time. Concerning the number

of Gauss points in time we take into account the parabolic time step restriction Dt 	 Dx2. We only have to
integrate exactly a time polynomial of degree # kþ1

2
, as this still guarantees the high order with respect to

the discretization parameter Dx. The corresponding Gauss weights in space and time are denoted by exj

and xl, respectively. The fully discrete DG scheme is then given by
bU nþ1
i;p � bU n

i;p ¼ �
XLðkÞ
l¼1

xl ½GðslÞ/i;p�oQi
þ H 
ðslÞ

o/i;p

ox

� �
int

� HðslÞ
o/i;p

ox

� �
oQi

 !

þ
XLðkÞ
l¼1

XJðkÞ
j¼1

exjxlF ðUhðnj; slÞ; ðU hÞxðnj; slÞÞ
o/i;p

ox
ðnjÞ; p ¼ 1; . . . ;M ; ð4:54Þ
where G, H* and H denote the different numerical fluxes.
To evaluate the right-hand side of this Eq. (4.54) we need values of the approximation Uh at all the space–

time Gauss points. These values are obtained from the space–time Taylor expansion
Uhðn; sÞ :¼ U n
i ðxiÞ þ

Xk

j¼1

1

j!
s

o

ot
þ n

o

ox

	 
j

U n
i ðxiÞ; for ðn; sÞ 2 Qi � ½tn; tn þ DtÞ; ð4:55Þ
where xi denotes the barycenter of the grid cell. This follows the evolution operator based time integration,
proposed by Harten et al. [15] already in 1987, in the framework of finite volume schemes for the Euler equa-
tions. For a piecewise linear approximation this approach equals to van Leer’s well-known MUSCL approach
[7]. While the space derivatives are readily available from the polynomial approximation at time tn the time
and the mixed space–time derivatives have to be calculated using the so-called Cauchy–Kovalevskaya (CK)
procedure. In this procedure, the time derivatives are computed from space derivatives using successively
the governing equations. Within the construction of numerical methods it was used first in the Lax–Wendroff
method [17] to get second order accuracy in space and time. Later on, Toro and his co-workers proposed in
[23,24] for advection equations the class of finite volume ADER schemes which has as main building block the
approximation of the GRP based on the CK procedure. We also refer to Dumbser and Munz [12] and Dumb-
ser [11] who introduced an efficient way to implement the CK procedure for nonlinear systems with the aid of
the generalized Leibniz rule. Based on the CK procedure a generalization of the Lax–Wendroff scheme to arbi-
trary order and multi dimensions is given in [19].
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Using the space–time approximation (4.55) it is straightforward to calculate the volume integrals in the
weak formulation. The values of the integrand at the space–time Gauss points are given by Uh evaluated at
these points. The arguments for the numerical fluxes between the grid cells are also given by the space–time
Taylor expansions from the left and the right cell.

To conclude the derivation of the scheme, we have to define appropriate numerical fluxes across the grid
cell interfaces. We first linearize the nonlinear fluxes at each time Gauss point about the arithmetic mean
fUgiþ1

2
:

Giþ1
2
ðslÞ ¼ Diþ1

2;l
U x xiþ1

2
; sl

� �
:¼ D fUgiþ1

2
ðslÞ

� �
Ux xiþ1

2
; sl

� �
: ð4:56Þ
This seems to be a natural choice, as diffusion does not prefer any direction. According to Section 4.2, we
choose the following structure for our gradient approximation
U x xiþ1
2
; sl

� �
¼ Uxðxiþ1

2
; slÞ

n o
þ dðkÞffiffiffi

p
p

Dx
P iþ1

2;l

��
U xiþ1

2
; sl

� ���
; ð4:57Þ
which yields the following numerical flux
Giþ1
2
ðslÞ ¼ F fUgiþ1

2;l
; fUxgiþ1

2;l
þ dðkÞffiffiffi

p
p

Dx
P iþ1

2;l
sUtiþ1

2;l

	 

: ð4:58Þ
For the second numerical flux H iþ1
2
ðslÞ we proceed in an analogous way and obtain
H iþ1
2
ðslÞ ¼ F fUgiþ1

2;l
; fUgiþ1

2;l
þ 2Dx

3
ffiffiffi
p
p

dðkÞQiþ1
2;l

sU xtiþ1
2;l

	 

: ð4:59Þ
To enhance computational efficiency we propose a simplification of the internal flux by
H 
iþ1
2
ðslÞ :¼ D U�iþ1

2
ðslÞ

� �
U�iþ1

2
ðslÞ � Diþ1

2;l
U�iþ1

2
ðslÞ; ð4:60Þ
which allows to combine the fluxes H* and H to
�H 
iþ1
2
þ Hiþ1

2
� 1

2
F fUgiþ1

2
; sUtiþ1

2
þ 4Dx

3
ffiffiffi
p
p

dðkÞQiþ1
2;l

sUxtiþ1
2

	 

: ð4:61Þ
We observed in numerical experiments, that the last term involving the jump of the derivative sUxb enhances
the stability. However, analogous to the scalar case, for higher order approximations the effect is very weak,
which may be due to the fact, that this term is multiplied with 4Dx

3
ffiffi
p
p

dðkÞ, which decreases for higher order. For
computational efficiency we drop this term out and use
�H 
iþ1
2
þ Hiþ1

2
� 1

2
F fUgiþ1

2
; sUtiþ1

2

� �
: ð4:62Þ
In our calculations in the next subsection we also modified the jump term of the numerical flux Giþ1
2
ðslÞ. As in

the considered example the eigenvalues of the diffusion matrix do not differ much, we set Kiþ1
2
½p; p� � 1 to

obtain
Giþ1
2
ðslÞ ¼ F fUgiþ1

2;l
; fUxgiþ1

2;l
þ dðkÞffiffiffi

p
p

Dx
sUtiþ1

2;l

	 

: ð4:63Þ
We note, that in the system case the numerical flux of the SIP-DG scheme in the form
GSIP
iþ1

2
ðslÞ ¼ fF ðU ;U xÞgiþ1

2;l
þ C

k2

Dx
kmaxsUtiþ1

2;l
ð4:64Þ
differs from the dGRP approach, as the jump term is not multiplied with the diffusion matrix. We observed in
numerical experiments that for the compressible Navier–Stokes equation, a SIP-type jump term leads to a dis-
cretization with sub-optimal order of accuracy: For polynomial trial functions with even degree k we only get
a convergence rate k. Numerical investigations indicate, that in the case of mixed hyperbolic/parabolic prob-
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lems a jump term should be avoided in the hyperbolic part. If the jump term is multiplied with the diffusion
matrix this is automatically guaranteed.

In the nonlinear case, we approximated the time integrals by Gauss quadrature and obtain the values at the
Gauss points from a Taylor expansion. We conclude this derivation by applying this ‘‘nonlinear’’ procedure to
the scalar linear case. With the above introduced approximations, the numerical flux reads in this case as
Table
Experi

#Cells

DG(k

8
16
32
64

DG(k

8
16
32
64

DG(k

4
8

16
32

DG(k

4
6
8

16

DG(k

2
4
6
8

Z Dt

0

jux xiþ1
2
; t

� �
dt :¼

X#k
2

j¼0

g

��
o2ju
ox2j

xiþ1
2
; 0

� ���
þ o2jux

ox2j
xiþ1

2
; 0

� �� �	 

ðjDtÞjþ1

ðjþ 1Þ! : ð4:65Þ
The comparison with the flux (2.15) obtained from the time integration of exact dGRP solution, indicates a

small difference in the constants of higher derivatives. The values eC2j in (2.15) become slightly larger than one,
while in (4.65) they are equal to one. If we consider smooth data, the jump cancels out and thus in this case the
formulae (4.65) and (2.15) coincide.

4.4. Numerical results

To demonstrate the accuracy of the scheme and the experimental order of convergence we consider the fol-
lowing system of two equations
u1

u2

	 

t

¼
u2 0

u2 u1

	 

u1

u2

	 

x

	 

x

þ �0:2e0:5x�0:2t � 0:75e1:5x�1:2t

�ex�t � 2:25e1:5x�1:2t

	 

; ð4:66Þ
for (x,t) 2 [0;1] · [0;0.1]. The exact solution is given by
3
mental order of convergence

L2(u2) OL2
L1(u2) OL1

= 1)

1.20E�03 8.65E�04
2.89E�04 2.1 2.11E�04 2.0
7.14E�05 2.0 5.26E�05 2.0
1.78E�05 2.0 1.31E�05 2.0

= 2)
1.55E�05 1.02E�05
1.99E�06 3.0 1.36E�06 2.9
2.53E�07 3.0 1.75E�07 3.0
3.16E�08 3.0 2.21E�08 3.0

= 3)

4.98E�06 4.04E�06
2.86E�07 4.1 2.30E�07 4.1
1.68E�08 4.1 1.30E�08 4.1
1.02E�09 4.0 7.64E�10 4.1

= 4)

2.37E�08 1.70E�08
3.16E�09 5.0 2.30E�09 4.9
7.57E�10 5.0 5.55E�10 4.9
2.41E�11 5.0 1.79E�11 5.0

= 5)

4.46E�08 3.73E�08
7.16E�10 6.0 6.07E�10 5.9
7.26E�11 5.6 6.12E�11 5.7
1.49E�12 5.5 1.26E�12 5.5
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u1ðx; tÞ
u2ðx; tÞ

	 

¼

e0:5x�0:2t

ex�t

	 

; ð4:67Þ
if appropriate initial values and boundary values are described. For the numerical calculations the exact values
at the boundary and at time t = 0 are prescribed.

In Table 3, the experimental order of convergence for the problem (4.66) with tend = 0.1 and d(k) = dmin(k)
are shown. We used for this calculations the numerical fluxes (4.61) and (4.62). The results clearly show that
the desired order of accuracy is obtained.

5. Conclusions

We used the exact solution of the diffusive generalized Riemann problem to define a numerical flux for finite
volume and discontinuous Galerkin schemes. The main advantage of this procedure is that the definition of
the numerical flux is based on the same data as the advection flux, no different treatment of the diffusion terms
is necessary, e.g. by assuming continuity at the grid cell interfaces. A difference to the hyperbolic case is that a
scheme based on the Riemann problem with piecewise constant initial data leads to an inconsistent scheme. In
the case of diffusion, it is necessary to take at least a piecewise linear approximation.

For finite volume schemes the order of convergence in space and time for smooth data are identical to the
degree of the polynomials in the reconstruction. It has to satisfy the usual stability constraint for explicit finite
difference schemes. If the dGRP flux is used within the discontinuous Galerkin framework the resulting
scheme has the optimal order k + 1 simultaneously in space and time for an approximation with polynomials
of degree k. A comparison with other discontinuous Galerkin schemes indicates, that the dGRP-DG scheme is
strongly associated to the symmetric interior penalty (SIP-DG) scheme. It gives a physical foundation of
penalization and a suggestion for a fix of the penalty constant in the SIP-DG scheme. The space–time char-
acter of the dGRP-DG scheme is reflected in the formula of the penalty constant where the time step Dt is
included. The proposed scheme fits into an extended class of interior penalty schemes which also contains
the recovery schemes of van Leer and Nomura [25].

We showed how to mimic the dGRP flux in an approximative way to nonlinear diffusion systems. A main
building block of the presented approximation is a combination of a space–time expansion and the Cauchy–
Kovalevskaya procedure. An alternative for time approximation would be the ODE approach using, e.g. a
Runge Kutta time approximation.

The extension to advection diffusion equations can be obtained by adding a numerical advection flux at all
time Gauss points. High order time consistency is given by the advection-diffusion CK procedure.
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